Quantized Innovations Bayesian Filtering

نویسندگان

  • Chun-Chia Huang
  • Robert R. Bitmead
چکیده

The paper provides simple formulas of Bayesian filtering for the exact recursive computation of state conditional probability density functions given quantized innovations signal measurements of a linear stochastic system. This is a topic of current interest because the innovations signal should be white and therefore efficient in its use of channel capacity and in the design and optimization of the quantizer. Earlier approaches, which we reexamine and characterize here, have relied on assumptions concerning densities or approximations to yield recursive solutions, which include the sign-of-innovations Kalman filter and a Particle filtering technique. Our approach uses the Kalman filter innovations at the transmitter side and provides a point of comparison for the other methods, since it is based on the Bayesian filter. Computational examples are provided.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantized Variational Filtering for Bayesian Inference in Wireless Sensor Networks

The primary focus of the chapter is to study the Bayesian inference problem in distributed WSNs with particular emphasis on the trade-off between estimation precision and energy-awareness. We propose a variational approach to approximate the particle distribution to a single Gaussian distribution, while respecting the communication constraints of WSNs. The efficiency of the variational approxim...

متن کامل

Speech Enhancement Using Gaussian Mixture Models, Explicit Bayesian Estimation and Wiener Filtering

Gaussian Mixture Models (GMMs) of power spectral densities of speech and noise are used with explicit Bayesian estimations in Wiener filtering of noisy speech. No assumption is made on the nature or stationarity of the noise. No voice activity detection (VAD) or any other means is employed to estimate the input SNR. The GMM mean vectors are used to form sets of over-determined system of equatio...

متن کامل

Bayesian Inference for Markov Switching Stochastic Volatility Models

We study a Markov switching stochastic volatility model with heavy tail innovations in the observable process. Due to the economic interpretation of the hidden volatility regimes, these models have many financial applications like asset allocation, option pricing and risk management. The Markov switching process is able to capture clustering effects and jumps in volatility. Heavy tail innovatio...

متن کامل

Estimation using Quantized Innovations for Wireless Sensor Networks

Acknowledgements I would like to thank Babak Hassibi, my mentor who was always around to give valuable suggestions—for both my project and my academic endeavours, and Ravi Teja Sukhavasi, my brilliant grad-student mentor who kindly took me under his wing and who always took the time to explain and derive important concepts for me. I have learned so much under both of their guidance. Abstract Re...

متن کامل

Optimal sensor and path selection for target tracking in wireless sensor networks

This paper addresses target tracking in wireless sensor networks where the nonlinear observed system is assumed to progress according to a probabilistic state space model. Thus, we propose to improve the use of the quantized variational filtering by jointly selecting the optimal candidate sensor that participates in target localization and its best communication path to the cluster head. In the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1704.02641  شماره 

صفحات  -

تاریخ انتشار 2017